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Abstract

In this paper I present a system for automatic opin-
ion analysis built in a short time-frame using freely
available open-source processing tools and lexical re-
sources available from prior research. I use a simple
feature-set that is largely language independent and a
freely available machine-learning framework to model
the subtasks as classification problems and report on
my system’s performance. Additionally, I show that
blind relevance feedback improves results sentence-
level relevance judgment. My system shows that it is
possible to quickly build an opinion analysis system in
a short period of time that can perform at an average
level.
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1 Introduction

The NTCIR Pilot Task on Opinion Analysis is
a multi-language sentence-level granularity opinion
identification task with a opinion holder identifica-
tion component, and optional polarity and sentence-to-
topic relevance components. Please see [1] for more
details about the task, including a description of the
corpus and overview of the results.

As a co-organizer of the NTCIR Pilot Task on Opin-
ion Analysis, I developed a system to submit to the
evaluation. I have not worked previously in the area of
Opinion Analysis, but have had extensive experience
in summarization and text similarity computation, so
decided that I would view this task as an investigation
into how far fairly simple techniques combined with
off-the-shelf machine learning approaches can get you
with a relatively short development time.

Since I am also interested in multilingual aspects
of computational linguistics, I felt that using surface-
level feature-extraction combined with machine learn-
ing would allow me to easily use the same approach
for multiple languages. I developed an English system,

but plan to adapt the system to Japanese and Chinese
trained over the data from this pilot task.

1.1 Related Work

Early work in subjectivity analysis focused mainly
on determining whether sentences or documents are
subjective or objective. Wiebe and her colleagues have
performed much of the early work in this area, in [10]
describing a corpus tagged at the sentence level for
subjectivity and a Naive Bayes classifier using syntac-
tic classes, punctuation, and sentence position as fea-
tures. Hatzivassiloglou and McKeown [3] introduced
the approach of using bootstrapping to determine the
orientation of adjectives, then Hatzivassiloglou and
Wiebe [4] showed that gradable adjectives are useful
for subjectivity classification, and Riloff and Wiebe [6]
identified strong subjectivity clues and weak subjectiv-
ity clues and surveyed syntactic patterns to detect sub-
jective sentences. Yi et al. [11] present an approach
that extracts sentiment towards a given subject instead
of classifying entire documents or sentences as posi-
tive or negative.

More recently, Pang and Lee [5] examine human
performance over the task of rating sentences on a
semantic scale (e.g., from one to five “stars”) and
then develop a classifier for that task. Yu and Hatzi-
vassiloglou [12] develop a Bayesian classifier for de-
termining subjectivity or objectivity at the document
level, and a multi-classifier system that uses uni/bi/tri-
grams, part of speech frequency, and orientation ad-
jectives as features for sentence classification.

2 Approach

I decided to use machine learning learning tech-
niques to build my system. The general approach is to
model the problem as a standard classification prob-
lem. I used the WEKA machine learning toolkit [2]
to experiment with a variety of classifiers over the fea-
tures for each task.



The MPQA corpus1 is used as training data for each
of the learners. Resources used to generate the features
include the OpenNLP tools2, for part-of-speech and
named entity tagging, a list of country names, a list of
names separated into gender from the US Census3 and
the word polarity list presented in previous work by Yu
and Hatzivassiloglou. [12]

2.1 WEKA Machine Learning Environment

Each of the experiments were conducted using
the WEKA machine learning environment. The
WEKA environment contains approximately 40 ma-
chine learning classification algorithms. I approach
Opinionated sentence identification, polarity identifi-
cation, and opinion holder identification as three sepa-
rate machine learning problems, generate training data
from each based on the MPQA corpus, and then train
a variety of classifiers from the WEKA environment.
For each task I choose one of the top performing clas-
sifiers based on the ten-fold cross-validation evalua-
tion results, then integrate the classifier and its learned
model into a prediction framework. Details on the fea-
tures and classifiers used for each of the tasks are given
below.

2.2 Opinion Identification

Sixteen features are used for opinionated sentence
identification: length, average valence, max valence,
min valence, in quote, has person, has org, has place,
has country, he count, she count, he said, she said,
ne said, said ne, and location. While most of the fea-
tures should be self-explanatory, some might not be
as obvious. Table 3 describes the features used for the
Opinion Holder subtask, many of which are used in the
opinion identification and polarity subtasks as well.
Valence is the sum of the polarity scores from the opin-
ionated word list, obtained from the authors of [12].
Their approach basically builds a large set of opin-
ionated words and their polarity (positive or negative)
based on bootstrapping from a smaller list of words.
The features he said, she said, ne said, and said ne are
the number of times that “he said”, “she said”, or some
named entity was found near a communication verb,
and location is the sentence position, where 1 would
be the first sentence of the document with larger num-
bers sentences that occur later in the document. All of
these features are fairly simple to compute, with only
the named-entity and opinion word valence features
requiring language-specific information.

Sentences from the MPQA corpus were used as
training, however their annotation format is at a finer

1http://www.cs.pitt.edu/mpqa/
2http://opennlp.sourceforge.net/
3http://www.census.gov/genealogy/names/

names files.html

Classifier Accuracy Precision FP
Baseline 54.29 54 508
JRip 62.83 65 230
Logistic Model Tree 64.07 65 228
BayesNet 63.55 66 218
SMO 63.18 66 210

Table 1. Accuracy, Precision, and False
Positive rate of opinion identification
classifiers.

granularity and had to be converted into sentence-
level “subjective” or “not subjective” tags. This was
done according to the rules given in Section 4 of the
Database.1.2.README file. These are the same rules
used in [7, 6].

I experimented with both nominal and numeric tar-
gets for the learning algorithms. The training data as-
signed a value of “0.0” to non-opinionated sentences,
and “1.0” to opinionated sentences for numeric sen-
tences, or the classes “opinionated” and “not” for opin-
ionated and non-opinionated sentences respectively. I
tested a total of 27 classifiers, with results from the
baseline (majority class) and four top performing clas-
sifiers shown in Table 1.

I selected the SMO classifier, which implements
John C. Platt’s sequential minimal optimization al-
gorithm for training a support vector classifier using
polynomial or RBF kernels. The SMO classifier has
comparable performance to the BayesNet classifier,
but slightly fewer false positives.

For predicting whether unknown sentences are
opinionated or not, a Java program is called that com-
putes features for the sentences, the resulting features
are parsed into a WEKA-compatible input file using a
perl program and the SMO model is run over the input
to generate predicted values for each sentence. When
converting the predicted values to the binary Y or N
labels, any sentence with a predicted value over the
arbitrary threshold of 0.8 was labeled as opinionated.
Given more time and training data, I would like to run
some experiments to tune this value to try to improve
performance of the opinionated prediction component
of my system.

2.3 Polarity

I trained 15 classifiers for the polarity classifica-
tion problem. The training data was filtered to con-
tain only opinionated sentences, with polarity values
were mapped to (-1.0, 0.0, 1.0) based on the polarity
of the sentence (Negative, Neutral, Positive). Polar-
ity for a MPQA sentence is computed by summing the
polarities for the subjective elements annotated for a
sentence, with a positive polarity as +1, a negative po-



larity as -1, and 0 for neutral polarities. A sentence
with a sum of 0 is labeled neutral, or positive or neg-
ative based on the sign of the polarity sum. To map
a predicted polarity back to one of positive, negative,
or neutral, the thresholds of 0.5 and greater map to
a positive sentence, between -0.5 and 0.5 is a neu-
tral sentence, and less than -0.5 is a negative sentence.
These thresholds were arbitrarily set, without any tun-
ing based on the MPQA corpus. There were 6054
training instances overall. The feature set is the same
as that used for opinionated sentence prediction.

Of the 15 classifiers tested, the Weka
instance-based K-nearest neighbor classifier
weka.classifiers.lazy.IBk had the best performance,
and was selected as the classifier for the polarity
component.

2.4 Opinion Holders

The opinion holder identify task is slightly more
difficult because in the English task, an opinion holder
can potentially come from anywhere in the document,
or even not be mentioned in the document at all. I
decided to model the task by enumerating all previ-
ously mentioned named entities for a given sentence,
and then model the learning problem as a classification
problem where features are generated for each named
entity, sentence pair. The pairs are classified as one
of “not holder”, “weak holder”, “medium holder”, or
“strong holder” based on the opinion holder from the
MPQA corpus. Twenty-four features are used for a
named entity-sentence pair. The features are listed in
Table 3. The sentence “gender” is computed by sum-
ming the values of the genders of the NEs contained
in the sentence, where “he”, “his”, and known male
names contribute a positive score, while “she”, “her”,
and known female names contribute a negative score.
The genderMatch feature looks to see whether the can-
didate NE matches the gender of the sentence for NEs
that are known gender names or pronouns.

The training data is created by creating a train-
ing instance for each sentence and all previous po-
tential opinion holders, and matching the candidate
opinion holders to the opinion holders labeled for the
MPQA data. A score for each opinion holder match-
ing a holder in the MPQA data is set for the sentence-
opinion holder pair as 1

#OpinionHolders . This resulted
in 180,777 training instances, sampled down to 56,144
instances. In the classifiers trained with that data set,
the location (sentence position) feature correlated too
strongly, resulting in only opinion holders from the
first sentence being extracted. That feature was re-
moved, and new models were trained over 64,054 in-
stances.

I selected the weka.classifiers.functions.Logistic
classifier for this problem. Since there is a large num-
ber of potential opinion holders for each sentence, I

Feature Description
location Sentence position
closeness Distance from sentence to NE
isPronoun 1 if the NE is a pronoun, 0 oth-

erwise
genderMatch 1 if the “gender” of the sentence

matches the gender of the NE, 0
otherwise

numAppearances Number of times the NE has ap-
peared in the document

prevAppearances Previous number of times the
NE has appeared in the docu-
ment

isPerson 1 if the NE is a person
isLocation 1 if the NE is a location
isCountry 1 if the NE is a country
isOrganization 1 if the NE is an organization
inQuotes 1 if the NE appears inside

quotes
isImplicit 1 if the NE is the implicit author

NE
neSaid 1 if the NE appears before the

verb “to say”
sentNumPronouns number of pronouns in the sen-

tence
sentNumPeople number of people in the sen-

tence
sentNumLocations number of locations in the sen-

tence
senNumOrgaizations number of organizations in the

sentence
sentHeSaid 1 if the sentence contains “he

said”
sentSheSaid 1 if the sentence contains “she

said”
sentHeTokens number of “he” tokens in the

sentence
sentSheTokens number of “she” tokens in the

sentence
sentNESaid 1 if there is a NE “to say” se-

quence in the sentence
sentSaidNE 1 if there is a “to say” NE se-

quence in the sentence

Table 3. Features used in the Opinion
Holder classifier.



predict as→ strong medium weak not total
strong 21987 320 247 4850 27404
medium 7959 519 319 3475 12272
weak 4802 282 713 4830 10627
not 3504 80 95 9916 13595

Table 2. Opinion Holder training results.

post-process the predictions to reduce the number of
potential opinion holders. Scores are assigned to each
potential opinion holder based on the predicted class
of the opinion holder (not, weak, medium, or strong)
and some heuristics are used to merge potential opin-
ion holders with similar names, adding to the score
of the merged candidate opinion holder. Since I did
not create a model to predict the number of opinion
holders for each sentence, I decided to randomize the
number of opinion holders selected for each sentence
by selecting 1 + rand(2), or 1-3 opinion holders per
sentence. A future improvement would be to model
a classifier to predict the number of opinion holders
for each sentence, or to just select one opinion holder
for each sentence, as a later examination of the gold-
standard data showed that the majority of sentences
have only one opinion holder.

Table 2 shows the confusion matrix of prediction
results over the training data. The classifier does not
predict the medium or weak classes with much fre-
quency, instead favoring either the strong class, or not
an opinion holder class.

2.5 Relevance

The relevance task was not modeled as a machine
learning problem, since no training data was available,
outside of the one sample topic distributed to partici-
pants. To determine whether sentences are relevant to
the topic or not, a standard vector space model with
tf*idf weights [9] is used to match sentences to the
topic. The standard formulation for cosine similarity,
shown in Equation 1 is used.

Sim(Q,Di) =

∑
j

wQ,jwDi,j√∑
j

w2
Q,j

√∑
j

w2
Di,j

(1)

Due to the sparse nature of text short length of sen-
tences as information retrieval “documents”, Rocchio
blind relevance feedback [8] is used to improve rel-
evant sentence detection. The Rocchio term updated
formula is shown in Equation 2, where β = 0.75 and
γ = 0.25, both common values used in the IR com-
munity.

Q1 = Q0 + β

n1∑
k=1

Rk

n1
− γ

n2∑
k=1

Sk

n2
(2)

Rocchio blind relevance feedback modifies weights
for query terms based on the assumption that good
matches to the query will contain additional terms that
are also indicative of matching content, and sentences
that do not match will contain other terms that are in-
dicative of non-matching content. Since sentences are
very short units of text to use in vector space mod-
els for similarity, I thought it would be important to
draw in additional relevant terms over just the ones in
the query through the process of blind relevance feed-
back. In my experiment, I perform one round of feed-
back for each document by updating query terms from
the top three matching sentences plus any sentences
with a cosine similarity greater than 0.15, and reducing
weights for terms from sentences with a similarity of
less than 0.01. After performing the term re-weighting
for each document, the actual retrieval is performed,
and sentences with a similarity over the threshold 0.15
are considered relevant. Since I did not have any train-
ing corpus to tune this parameter, it was set by hand
based on runs over the single sample topic provided
for English.

3 Results

For the evaluation approach and detailed results,
please see [1]. Table 4 shows the results for the lenient
and strict standards over the opinion identification, po-
larity, and relevance subtasks. In addition, unofficial
results for a run that does not use Rocchio blind rele-
vance feedback are included. Table 5 shows the results
for the opinion holder evaluation.

3.1 Opinionated

In the lenient evaluation my system performs very
well from the standpoint of precision, performing
poorer that only one system, and average from the re-
call and f-measure standpoints. I’m encouraged by
these results as my system still have many areas that
can be tuned with further training data, and the mis-
match between the MPQA and NTCIR Opinion cor-
pora also makes it more difficult to perform well when



Table 4. English Opinion Analysis results
Standard Opinionated Relevance Polarity

P R F P R F P R F
Lenient (official) 0.325 0.624 0.427 0.510 0.322 0.395 0.077 0.194 0.110
Strict (official) 0.073 0.642 0.131 0.242 0.355 0.287 0.014 0.185 0.027
Lenient (no Rocchio) 0.325 0.624 0.427 0.490 0.163 0.245 0.077 0.194 0.110
Strict (no Rocchio) 0.073 0.642 0.131 0.236 0.183 0.206 0.014 0.185 0.027

working with data that is different from the training
data.

For the strict evaluation, overall all precision scores
decrease dramatically, but my system still does quite
well from the standpoint of precision and f-measure,
performing worse than only one system. It has average
recall, performing better than four systems, and worse
than four systems.

The strict evaluation is difficult over the English
data as there are a very small number of examples for
the strict evaluation: the English data does not have
high agreement between all three annotators, making
it difficult to learn a classifier that can perform well for
the strict standard. It would be interesting to increase
the number of annotators to some larger number, such
as eleven, and define multiple standards based on the
number of votes from each annotator.

3.2 Relevance

Only six of the nine submitted runs contained rel-
evance information, and of those six runs two of the
groups runs did not differ in their relevance evaluation,
giving four unique relevance runs. Under the lenient
standard, my system had the best performance for pre-
cision, third best performance for recall, and second
best performance for f-measure. Under the strict stan-
dard my system had the best precision and f-measure,
with the third best recall.

As an unofficial experiment, the system was re-run
without using blind relevance feedback, shown in Ta-
ble 4 as the two runs labeled (no Rocchio). In both
strict and lenient evaluations, precision and recall fell
in the runs that did not use Rocchio blind relevance
feedback, confirming our hypothesis that blind rele-
vance feedback helps improve relevance results for
sentence-level bag-of-words cosine similarity metrics.

3.3 Polarity

Under the lenient evaluation, my system performed
poorly overall, better than only one system in each cat-
egory. Under the strict evaluation relative performance
does not change.

3.4 Opinion Holders

Table 5 shows the results for my system on the opin-
ion holder identification subtask.

Table 5. English Opinion Holders Analy-
sis results

Standard P R F
Lenient 0.066 0.166 0.094
Strict 0.018 0.169 0.032

For the opinion holder identification subtask, my
system performs poorly. A key reason for this is that
my system submits are large number of opinion hold-
ers: from one to three for each sentence. The actual an-
notated data has, on average, a little over one opinion
holder per sentence, so a better strategy is to propose
only one opinion holder per sentence. Despite offering
multiple opinion holders per sentence, my system’s re-
call is still quite poor.

A second large factor in the poor opinion holder
identification is the feature set actually used for train-
ing the classifier. Originally the “sentence position”
feature was included in the feature set used for train-
ing, and an examination of the resulting classifiers
showed that the classifiers would only select opinion
holders from the lead sentence of the article when the
feature was available. I intuitively did not think that
was a good strategy, so I removed the feature from
the training set and re-trained the classifiers. While
that hurt performance over the training data, I felt
that it was a more general approach to learn rules that
would take into account other, more complicated fea-
tures other than solely the sentence position.

4 Conclusions

I am pleased with the performance of my sys-
tem, which received average scores despite being
this researcher’s first foray into the opinion analysis
field. The system was developed using a freely avail-
able open-source tagging framework, some lexical re-
sources from previous work in the area, and a machine
learning framework to create classifiers trained over
data from a different corpus.



While my system performed average in most sub-
tasks, it also performed better than average in pre-
cision for opinionated sentence detection, but disap-
pointingly performed quite poorly for polarity and
opinion holder identification. Due to the different na-
ture of the training and testing corpora, I believe that
the machine learning approach would do much better
with training data similar to the evaluation data, but
it still seems that the MPQA corpus was beneficial in
creating classifiers for use on a different corpus. There
are also many parameters that can be tuned for my sys-
tem.

While the overall performance of my cosine-
similarity based relevance component was not as good
as I had hoped, it is clear that the implementation of
blind relevance feedback improved scores for the rel-
evance component, which can be merged with other
features beyond a bag-of-words model to determine
relevance in the future.

Since the majority of the features used in my system
are quite simple, I plan to create a Japanese version of
this system in the near future and run an evaluation
to see how well the system can be ported to another
language.
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